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STATIONARY FLOW OF A REACTING LIQUID WHOSE PROPERTIES VARY 

WITH THE EXTENT OF REACTION 

D. A. Vaganov UDC 532.542:060.095.26 

Considerable interest attaches to the flow of a reacting liquid whose properties change 
during the reaction in relation to analysis of displacement-type flow polymerization reac- 
tors. There is a substantial increase in viscosity as the polymerization proceeds (by up 
to a factor ]0 k or more), which produces qualitative changes in the flow picture, and this 
in turn influences the macrokinetic relationships. 

Here we consider the simple case of isothermal flow of a reacting liquid in which the 
extent of reaction and the properties are uniquely determined by the reaction time. A gen- 
eral self-modeling solution is derived and the main features of the flow are examined for the 
case where there is a considerable increase in viscosity. 

I. Consider the stationary laminar flow of a reacting Newtonian liquid in a tube (tubu- 
lar flow reactor). The viscosity ~ and density p alter from the initial values ~0 and p0 at 
the inlet to the final values ~z and p~ on complete reaction. The temperature is taken as 
constant, and the reactions are independent of the velocity gradients, while the effects of 
diffusion are neglected because of the smallness of the diffusion coefficients. The extent 
of reaction and the properties of the liquid are uniquely determined by the reaction time t, 
and the relationships are considered as given. 

To deriva the flow pattern we assume that the radial velocity component arising from 
change in the flow profile on account of the change in properties is small by comparison with 
the axial component, while the pressure change along the radius is slight, and also that the 
viscosity is large enough for one to neglect inertia and the effects of the inlet hydrody- 
namic-stabilization part. With these assumptions, the flow at each section is essentially 
plane-parallel, which is an approximation widely used in various applications to the flow of 
liquids with varying properties [I-3]. The general equations of motion for a Newtonian liq- 
uid [4] in this approximation give 

t O( aV) dP 
R aR t~R-EE + - - ~ - - = 0 ,  O ~ R ~ R  o, O ~ Z ~ Z o ,  (1 .1)  

where V is the axial component of the flow velocity, R is the distance from the axis, P = 
P(Z) is the difference between the pressure at the inlet and that in a given section, Z is 
the distance from the start, and Z0 and R0 are the tube length and radius correspondingly. 
The radial velocity component W is given by the equation of continuity 

I 0 a 
R oR (oRW) + ~ (pv) = 0. ( 1 . 2 )  

The reaction time t is the time from the instant when an element of the liquid enters 
the reactor and is given by 

Z 

t = J '  e~v ' (1.3) 
o 

in which the integration is carried out along the path of motion of that element, i.e., alonga 
given  f low l i n e  ~(Z, R) = c o n s t ,  where 
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R o 

(Z, B) ~= J" pVfnrdr  
R 

(1.4) 

is the streamline function, which is related to the velocity components by 

O~/OR ---- - - 2 ~ H p V ,  O~/OZ ---- 2~RpW. ( I  .5) 

At the wall (at R = R0), ~ is zero, while the value at the axis coincides with the mass flow 
rate M = ~Rfp0u, where U is the speed with which the liquid is supplied to the tube averaged 

over the cross section. 

The spatial distribution of the reaction time t(Z, R) in accordance with (1.3) satisfies 

V ~t iV Ot ( 0 t )  ~ t ,  + ~ V  ~ * ( 1 . 6 )  

and at the inlet (at Z = 0) we have the natural boundary condition 

t(0, R) ~- 0 for all 0 ~  H < /~0. ( 1 . 7 )  

Our t a s k  i s  t o  s o l v e  ( 1 . 6 )  t o g e t h e r  w i t h  (1 .1 )  and ( 1 . 2 )  w i t h  g i v e n  ~ ( t )  and p ( t )  r e -  
l a t i o n s h i p s  and then to analyze the general features of the flow. No constraints are im- 
posed on the forms of ~(t) and @(t); the particular case of a stepwise change in properties 
has been =onsidered in [5]. 

2. The results of [5, 6] indicate that the solution to (1.6) should be sought as a 
self-modeling relationship 

t = t (X) ,  X ~ x p ( Z ,  J~)/~(Z) ( 2 . 1 )  

such that 

t - -~0  for X - + o o ,  t - ~ o o  for X - ~ 0 ,  ( 2 . 2 )  

while the function ~(Z) appearing in the self-modeling variable'X, which is also to be found 
during the analysis, is a strictly monotonically increasing function and should satisfy the 

condition 

a : 0 a t  Z - -~  O, ( 2 . 3 )  

in order that the value of X should increase without limit for Z § 0 for all @ > 0 and thus 
should meet the requirement of (1.7). 

The equations for o(Z) and the self-modeling dependence t(X) are to be derived from 
(1.6), namely since in accordance with (2. I) 

( a t )  X do(Z) dt(X) 
~Z- , =  _ (2.4) a (z) dZ dX ' 

and because the representation of (2.1) applies, the left side of (1.6) should split up into 
the product of two groups of cofactors, one of which is a function only of Z and the other 
of X. To obey (1.6) it is then necessary to specify a constant value for each of the groups 
of cofactors, which gives the desired equations. 

According to (2.1) and (1.5), for constant Z 

OV __ 0~ OV . . . .  aV ~Rp OV 2 
~ R - -  OR a~ a OX" 

On t h e  o t h e r  hand ,  on i n t e g r a t i n g  ( ] . 1 )  w i t h  r e s p e c t  to  R and u s i n g  the  f a c t  t h a t  ~V/~R = 0 
for R = 0 we have 

#V/aR : -- (R/fv)dP/dZ. (2.6) 

Then on integrating the expression for 3vf/$x implied by (2.5) and (2.6) we get 

if 

V 2 ~ dP [ f ( t ( x ) ) d x ,  ](t)----- F~176 (2 7) 
2nF0P0 ~ # [tp " " 

o 

This expression for V has the form necessary for the existence of the self-modeling so- 
lution of (2.1) and therefore on substituting (2.4) and (2.7) into (1.6) we get finally the 
following equations defining o(Z) and t(X): 
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1 do { dP/dZ [~; ( 2 . 8 )  
] /Z 7~ 2a~oVo 

dt t (2.9) 
- x ~ ! (t (x)) dx = --6-' 

o 

where B is an arbitrary constant whose presence reflects the fact that conditions (2.2) and 
(2..3) allow o(Z) to change by any constant positive factor, since the form of (2.1) is then 
unaltered. However, if the value of 8 is Specified, (2.8) together with (2.3) uniquely de- 
termines o(Z), and therefore the value of X, and for definiteness in what follows we put B = 
4. In that case, in spite of the differences in the physical formulation and the form of the 
self-modeling variable, (2.9) differs from the self-modeling equation arising in [6] only in 
the behavior of f(t). 

We differentiate (2.9) and eliminate the value of the integral to get an ordinary dif- 
ferential equation, which can be put in the following form with time t taken as independent 
variable: 

d2y (~)2 t 
Y~fi = \or --/(t),  g-~-2~/~' (2.10) 

where the new variable y is completely equivalent to X but has a mode of variation more con- 
venient for analysis. 

The solution to (2.10) should be monotone and satisfy the conditions 

g-+O ~r t -*O,  dy/dt--~ ]/]--(-~ ~r t-+oo. ( 2 . 1 1 )  

The first of these boundary conditions corresponds to (2.2), while the second follows from 
(2.9) in the limit X + 0. Also, for y + 0 it follows from (2.10) that 

d ~/] df ~ t VT, v? (2.12) 

and also that for f(t) z const the general solution to (2.10) is as follows (C and ~ are 
arbitrary real constants): 

C-1 ] / ~ s i n  (Ct + ~), C - i / ~ s h  (C t + ~), a ~ ] / T t  + ~. ( 2 . 1 3 )  

An infinite set of integral curves arises from the point y = t = 0, which is a singular 
point for (2.10). Some of these reach the y = 0 axis again, and it can be shown that the 
envelope ye(t) of the family of such nonmonotone integral curves isa unique solution to this 
boundary-value problem. 

To prove this we note that if yl(t) and yi(t) are integral curves for (2.10) with in 
general different functions f1(t) and fi(t) and these curves at some t = to touch one another, 
then because (2..10) can be put in the form 

d~ln g/dt 2 =_g_2 / ,  ( 2 . 1 4 )  

and we have for the ratio ~ = yl(t)/yi(t) that 

t 
r i 

d In ~] (t) ~---- h (t) Y2 (t) d-T ~ ( t )  y~ (t) o {(~12-- t ) /2  -t- (]z--/~)}yT2d~, ~l(to) = t ,  ( 2 . 1 5 )  
t o 

I ! 
it follows that if f2 ~> fl then for t > t0 we have Yl >7 Y2 and Yl /> Yi, and equality occurs 
only if there is complete coincidence between fl and f2 on the part between to and t. On 
this basis, we use the corresponding solutions of (2.13) to get that if the first of the 
following inequalities is violated 

rain V / ( t i ~ g ~ ( t o ) ~ m a x  ~/[(t) ( 2 . 1 6 )  
t > t  o t > t  o 

the integral curve for t > to is majored from above by a certain sinusoidal function, while 
when the second condition is violated it increases exponentially, and consequently in both 
cases it cannot be either the envelope Ye or the solution to the boundary-value problem. 
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Then the envelope ye(t) should satisfy (2.16) for all values of the argument, which means 
that it satisfies the boundary conditions of (2.11), i.e., it is the desired solution. If 
on the other hand we assume that two integral curves for (2.10) Yl and Y2 satisfy (2.11), 
then the ratio ~ = yz(t)/y2(t) is given by (2.14) and (2.11) as an expression coincident 
with (2.15) for to = ~ and fz 5 fl, and from this for ~ a I and f > 0 it follows that dlln 
~(t) I/dt < 0. Consequently, for Yl ~ y2 we should inevitably have n(0) a I for these inte- 
gral curves. However, in fact we have Yl/Y2 § y~(0)/y~(0) = I for t + 0 from (2.11) and 
(2.12), which is a contradiction serving as proof that the solution is unique. 

The existence and uniqueness of a solution to the boundary-value problem are simul- 
taneously a proof of existence for the self-modeling dependence of (2.1). 

3. According to this self-modeling solution, the reaction-time distribution in the flow 
of liquid through any section Z = const is defined by the same function t(X); as Z increases, 
we merely have to discard a larger and larger part of the universal curve, while the rela- 
tive values of the density distribution remain unchanged. The mean time required to reach 
a given section is 

M XO 

f f ( Z ) ~ - M - l y  t d r  Xg 1 S t (X)dX,  X o - ~ M / o ( Z  ). (3.1) 
o o 

Other characteristics in addition to ~ can be represented in quadratures as functions 
of X and X 0 (or y0 E I/2 Xr For example, since in accordance with (2.1) and (1.5) for con- 
stant Z we have 

OR~/OX = 6OR~/O~ = - - ~ a p V ,  (3.2)  

then  on substi tuting the  above e x p r e s s i o n  (2 .7)  i n t o  (3 ,2)  and i n t e g r a t i n g  we have 

(RX__R2) Fd"-fi ~/ /  2 ~_~o eG(X), (3 3) 
ag= "-~ Po 

where 

X X 

G(X)=  p f f ( z ) ) ~ '  F ( X ) =  ](t(x))dx. 
o o 

We should  have R = 0 f o r  X = X0, and t h e r e f o r e  (3.3)  g ives  the  p r e s s u r e  g r a d i e n t  dP/dZ as 

dP 2~~ ~176 ~t~ U ~  = r  yoG(Xo), (3 5) 

while for the radial coordinate we get 

m/R  : 

Substitution of (3.6) into (2.7) gives the flow speed as 

v / u  = 1 /  

From (2.8) with (3.5) we have for the Z coordinate that 

Y0 

Z=U~(yo) ,  ~ (Yo)=2yO(y )dy '  
0 

(3.6) 

(3.7) 

(3.8) 

while from (3.5) and (3.8) we have for the pressure change that 

Y0 

~o 2~ 5 P=8g-gUL,(yo) ,  P(Yo)=2 gO a(y) dy. 
Ro o 

(3.9) 

For a given flow rate, (3.5)-(3.9) completely describe the variations in the character- 
istics along the tube. Finally, the relation between the flow rate and the pressure differ- 
ence P0 z P(Z0) is given by a parametric representation following from (3.8) and (3.9): 
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Zo ( o < y < o o ) .  U -- ~(v) Po 
' RO 

Therefore, all the main flow parameters are expressed in quadratures in terms of the 
above t(X) relation. 

4. Particular interest attaches to the regularities when Vl ~V0; the flow of unreacted 
liquid in that case is compressed into a narrow jet breaking through the largely immobile 
layer of products, and in order to attain complete transformation one has to specify that 
the average residence time is substantially larger than the time actually necessary for reac- 
tion [5]. 

We assume that after a certain time to the properties cease to alter (complete reaction), 
and for simplicity we assume that the density is constant, so we examine the asymptotic be- 
havior for A ~ Vl/P0 § ~ on the assumption that the viscosity is unchanged at times for which 
the function f(t) = V0/V(t) appreciably exceeds ~ ~ A -I ~ I [for example, by considering the 
sequence of functions f(t, ~) = max{~, f0(t)}, where f0(t) is independent of ~ and becomes 
zero for t > to]. 

In accordance with (2.13), for t > to 

g = Y ,  + ~/~(t-- to) ,  (4.1) 

where y, ~ y(t0) and since the behavior of the solution over the final part t ~ to for suffi- 
ciently small ~ virtually ceases to be dependent on ~ with the above assumptions, y, can be 
considered as approximately constant. In the case of a stepwise change in viscosity [5] y = 
t0/arccos~ ~ (2/~)t0, and by means of analogy we assume also that y, ~ (2/~)t, in the gen- 
eral case. The values of t, for a series of relationships have been given in [6]; in par- 
ticular, for the linear relationship f(t) = I -- t/t0 we have t, ~ 0.60t0. 

The value of ~ ~ Z/U for a constant density coincides with the mean time required to 
attain a given section ~ , and we have as follows from (3.1) with (4.1) for the distance 
Z, at which complete reaction is attained: 

~, = t o + g ,  ] /A  ~__ ( 2 / a ) t ,  ] / A .  ( 4 . 2 )  

For Z > Z, we have the usual Poiseuille flow of completely reacted liquid, so 

p = p ,  + A(~--~ , ) ,  p , ~ p ( ~ , ) ,  (4.3) 

and for X > X, ~ (v/4t,) 2 we represent the expression corresponding to (3.1) for ~ < ~, in 
the form 

X 

= (x) + (x) = x (4.4) 
X. 

and note that apart from a narrow range X 2 X,, in which the first term in (4.4) for ~ < I 
can be neglected because of its smallness, ~0(X) is virtually independent of ~. Similarly, 
(3.4) for X > X, can also be represented in the following form apart from quantities that 
tend to zero for a + O: 

G(X) = Go(X ) + G,, G , =  (a/2) ~fA/t , ,  F(X)~_Fo(X), (4 .5 )  

where G0(X) and F0(X) are independent of ~. For X sufficiently large 

~o(X) ~-- i / V X ,  Go(X) --~ 2 J / X ,  (4 .6)  

where the substitution of (4.6) into (4.4) and (4.5) leads to uniformly suitable asymptotic 
expansions [the terms in (4.4) and (4.5) are comparable only for X/X, ~ A ~ I, and therefore 
for values of the argument at which differences from (4.6) appear the values of ~0(X) and 
G0(X) for A + ~ are negligibly small by comparison with the second terms]. As a result, we 
get from (3.9) for Z < Z, from (4.4)-(4.6) and (4.2) that 

p = ~ + ~2 (n/4t,) ]/'A. (4 .7)  

As regards the motion, the distance Z, for A ~ 1 can be subdivided into two partially 
intersecting regions corresponding, respectively, to the values X0/X, ~ 1 where the approxi- 
mation of (4.6) applies and values I ~ X0/X, <A for which one can neglect the first terms 
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in (4.4) and (4.5). In the first region, i.e., in the initial part 0 < ~ ~ ~,, the flow of 
the reacting liquid differs little from that of an inert flow in a channel of variable cross 
section: 

dP 8 ~o M R2 ( )--1/2 * Go (Yn) I + a Z ]/,-~ ( 4 . 8 )  
d-2 ~- R~ ~R~o' 2 = a (xo) ~- T ut-% , Ro 

while in the second, i.e., in the part t,/Ar 5 ~ ~,, which constitutes much the larger 
part of Z,, almost all of the cross section is occupied by completely reacted liquid (R~/ 
R~ ~ I), and the mass flow rate of this M, ~ ~(Z, R,) defines the current value of the pres- 
sure gradient: 

d P ~ 8  ~a M, M , X ,  Z 
= 

Under otherwise equal conditions, the compression and acceleration of the flow of a liquid 
which has been converted to a narrow jet are proportional to 

R~ G o (x0) - a O (x) v ~ V~0 (xi ~ V~ 

"--~z~'R 0 (a /2 t , ) ] /A  ' U -- X 0 2 t , '  

and a l t h o u g h  t h e  d e t a i l e d  b e h a v i o r  o f  t h e  j e t  i s  d e p e n d e n t  on t h e  d e t a i l e d  f o r m  o f  f ( t )  [ f o r  
e x a m p l e ,  f o r  a s t e p w i s e  c h a n g e  t h e  maximum v a l u e  o f  v = V/U/A i s  one  and i s  a t t a i n e d  a t  5 = 
( 1 / 2 ) g , ,  w h i l e  f o r  a l i n e a r  r e l a t i o n s h i p  i t  i s  0 . 7  and  i s  a t t a i n e d  a t  ~ ~ 0 . 4 5 , ] ,  w h i l e  t h e  
p r o p e r t i e s  s u c h  a s  c o n s t a n c y  of  t h e  e f f e c t i v e  r e a c t i o n  r a t e  dM,/dZ a l o n g  t h e  j e t  a r e  r e t a i n e d .  

The f o l l o w i n g  a r e  t h e  maximum v a l u e s  o f  t h e  f l o w  r a t e  and p r e s s u r e  d i f f e r e n c e  f o r  w h i c h  
t h e r e  i s  s t i l l  c o m p l e t e  c o n v e r s i o n  a t  t h e  e x i t ,  i n  a c c o r d a n c e  w i t h  ( 3 . 1 0 ) :  

a Z o ..,.,8>n 2 a ' l / / A  o~a/2 
U , - - ~ 2 t , . l / ~ ,  P , - -  Ro~ Z o ~ = O T o  ZOO,, 

while we have as follows for the dependence of the pressure difference on the flow rate from 
(4.7) and (4.3) for U > U, and U < U, correspondingly: 

_ _  = 2 U _ (4.9) 

P, U, 

It follows from (4.9) that for A ~ I there is a wide range in I ~ U/U, ~A corresponding 
virtually to the same pressure difference P ~ P,, so if the flow is maintained by specifying 
the pressure difference, on passing through this value the flow rate increases (or decreases) 
sharply by about a factor A, while the mode of flow changes stepwise from that corresponding 
to complete conversion at the output to one in which the only visible sign of reaction is the 
presence of an almost immobile layer of products compressing the flow [Z0/U ~ ~,, profile of 
the layer given in (4.8)]. 

One predicts a relationship of the form q = aU,/U for the extent of reaction q, where 
the factor a varies slightly with the flow rate, a(U,) = I. 

The results imply that the major quantitative relationships in the case of a consider- 
able increase in viscosity are determined by the values of only two parameters: the relative 
increase in viscosity A ~ M1/~0 and the parameter t,, which acts as a characteristic time 
scale. As t, is the sole parameter reflecting the variation of viscosity in time, an impor- 
tant point is that its value is determined mainly by the behavior of the liquid at times cor- 
responding to small extents of reaction, when the viscosity is still comparatively close to 
the initial value (also, the sooner the viscosity begins to differ appreciably from the ini- 
tial value, the smaller t, [6]), while there is hardly any effect on t, from features of the 
viscosity change at high degrees of reaction, where the viscosity substantially exceeds the 
initial value, and the same applies to the time of complete reaction, which also has little 
effect on this parameter and consequently on the flow laws. 

I �9 
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FORCE CHARACTERISTICS AND FLOW PARAMETERS IN COMBUSTION MODELS 

V. K. Baev, V. V. Shumskii, 
and M. I. Yaroslavtsev 

UDC 536.46:621.45.022 

In [I] we find results on the force characteristics and flow parameters in the internal 
section of a gasdynamic model with combustion in a pulsed wind tunnel at a Mach number in 
the incident flow M i = 7.3, the combustion being determined because the energy aspects of 
the IT-301 pulsed tunnel [2] allow one to have a four-chamber volume of not more than about 
1.2 dm 3 subject to the condition of providing pressures and temperatures sufficient for self- 
ignition of the hydrogen in the model. This four-chamber volume provides a diameter for the 
critical nozzle section of not more than about 10 mm on the basis of the maximum possible 
rate of fall in the incident air flow parameters allowing the forces and pressures to be 
measured, which with the model dimensions of [I] do = 72 mm gave the minimum possible value 

at M i = 7-7.5, where do is the diameter of the inlet to the air intake in the model. 

The positive results of [I] as regards the internal working process and force character- 
istics lead one to ask whether one can reduce M i by reducing the dimensions of the model with 
the same tunnel energy and with the same rates of fall in the parameters? Therefore, a model 
with do = 23 m~ was devised, which enabled one to reduce the Mach number of the incident air 
flow to M i = 4.9. The present paper is based on the results obtained with this model in a 
high-enthalpy air flow. 

The model (Fig. I) is a combination of the air intake and a chamber placed between Secs. 
2 and 5, in which the hydrogen supplied to the model burns. The inner part of the model 
either had the critical section at the exit (form I) or did not have a critical section (form 
2); then the expansion factors in the combustion chamber F c = F~/F2 were 2.92 and 3.75 for 
forms I and 2 correspondingly, where F5 and F2 are the areas of cross section at the exit 
from the combustion chamber in Sec. 5 and at the inlet in Sec. 2. 

The model was set up in the working part of the pulsed tunnel along the axis of the 
profiled nozzle on the lateral pillar I covered by the aerofoil 2. The pillar was attached 
to a mechanical device serving to isolate the longitudinal component from the total aero- 
dynamic force. This device in turn was connected to a one-component aerodynamic balance [3]. 
The model contained no volume where the hydrogen could be stored, in contrast to the model 
of [I], so the hydrogen was supplied from an external cylinder of capacity 120-150 cm 3 through 
the supporting pillar. 

The hydrogen was injected through two supply rings 3 and 4 through holes of diameter ] 
mm drilled at 45 ~ in the opposite direction to the flow: In the front ring 3 there were eight 
holes, and in the rear ring 4 there were six. About 60% of the hydrogen was supplied through 
the front ring and about 40% through the rear one. 

The experiments were performed with the following ranges in the incident air parameters: 
stagnation pressure and temperature P0i(T) = 60-70 MPa, T0i(T) = 1850-I000~ static tempera- 
ture and pressure pi(T) = 1100-150 hPa, Ti(T) = 350-!80~ dynamic head qi(~) = 1.8-0.25 MPa, 
M i = 4.9, air flow rate through model 0.85-0.14 kg/sec, and Reynolds number Re(T) = vi(T)/ 
~i(T) = (100-30)'106 I/m, where v i and v i are the velocity and kinematic viscosity of the in- 
cident air. Here r = 0-50 msec is the current time, the origin being reckoned from the in- 
stant of discharging a capacitor bank in the forechamber. The rates of fall in the parameters 
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